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Suppression of Transport Cross Phase by Strongly Sheared Flow
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A generic model for advection of a scalar by E 3 B flow with a linearly varying mean shows that
the cross phase factor in the transport flux is strongly reduced in the strong shear regime (shearing
rate . eddy turnover rate), leading to significant transport suppression. The cross phase scales much
more strongly with shear strength than do fluctuation amplitudes, allowing significant transport reduction
even if fluctuations increase, or decrease only slightly. Cross-phase suppression thus can be the dominant
transport-reduction mechanism in transport barriers.

DOI: 10.1103/PhysRevLett.87.185001 PACS numbers: 52.25.Fi, 52.35.Mw, 52.35.Ra, 52.55.Dy
Transport barriers are widely used in fusion plasmas to
improve confinement [1,2]. The suppression of transport
by flow shear is a key feature of virtually all barriers that
operate under strong flow shear, i.e., whose mean flow
shear straining rate exceeds the nonlinear decorrelation
rate. By definition, a transport barrier is a region of reduced
transport. Because turbulent transport is proportional to
fluctuation intensity, it is natural to attribute reduced trans-
port to reduced fluctuations. However, transport rates also
depend on the phase difference, or cross phase, between the
two fluctuations whose correlation drives a given transport
flux. Significantly, measurements examining the effect of
flow shear on the transport cross phase have found that the
cross phase is more strongly suppressed than the fluctua-
tion amplitudes [3–9]. This is true in the Ohmic H mode of
DIII-D, where the sine of the density-potential cross phase
is driven to a near-zero value, while the amplitudes de-
crease only modestly, or in some places actually increase
[3]. Similar behavior is observed in flow-shear layers gen-
erated by biased probes in a variety of devices [4–9].

The bulk of theoretical work on the suppression of
transport by flow shear has dealt with the suppression of
fluctuation amplitude. This work has been successful in
explaining fluctuation suppression as a remarkably general
effect, in providing a compelling physical picture and in
identifying the strong shear criterion for barriers. Theoreti-
cal work on the response of the cross phase to flow shear
is much less well developed. Indeed, prior work has been
restricted to resistive pressure gradient driven turbulence
[10–12] and to the weak shear limit [11,12]. Unlike the
observations, the fluctuation amplitudes and cross phase
are predicted to experience comparable reductions. The
experimentally relevant strong shear regime has not been
studied analytically. Nor has there been any investigation
of generic, non-mode-specific models that might provide
a general understanding like that obtained for amplitude
suppression using generic models [13].
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We report here the general properties of cross-phase
suppression in the strong shear regime, using the generic,
non-mode-specific model of Biglari, Diamond, and Terry
(BDT) [13]. The model treats the advection of an arbi-
trary scalar fluctuation by an E 3 B flow whose mean
component has linear shear and whose fluctuating com-
ponent is taken as known, either through measurement or
a theoretical calculation. As shown below, this response
is largely independent of whether the scalar is passive or
active and of the collective properties of the fluctuation
spectrum. This generality of the model is important be-
cause observations indicate that cross-phase suppression,
like amplitude suppression, occurs under a wide range of
conditions. In the strong shear limit, the cross phase has
an inverse scaling with flow shear strength that is two pow-
ers stronger than that of the amplitude (absolute value) of
the flux. The stronger suppression of cross phase is suffi-
cient to enable the flux to decrease with flow shear strength
even if the fluctuations do not decrease, or actually in-
crease. The stronger suppression of cross phase reflects
its proportionality to the real part of the inverted advective
resonance operator. In the collisionless strong shear limit
this goes as the resonance width, or turbulent diffusivity,
divided by the flow shear strength. However, the diffusiv-
ity is governed by the same operator as the advected scalar
and thus is itself suppressed like the advected scalar.

Consider Cartesian coordinates aligned so that z is in the
direction of the mean magnetic field, y is in the direction
of the mean flow, and x is in the direction of the inhomo-
geneity of the mean flow and mean scalar x0. The mean
scalar is subjected to transport under advection of scalar
fluctuations by the fluctuating flow. The evolution equation
describing this transport is ≠x0�≠t 2 ≠�≠x�x̃cB21

0 =f 3

z ? x� � 0, where the tilde indicates the fluctuating com-
ponent, the brackets indicate an average over y and z, and
2cB21

0 =f 3 z is the fluctuating E 3 B flow expressed
in terms of the electrostatic potential f. The bracketed
quantity is the fluctuation-induced flux G,
G � 2Re�x̃cB21
0 =f 3 z ? x� � Re

X
k,v

icB21
0 kyx̃k,v�x�f2k,2v�x� � 2

X
k,v

cB21
0 kyjx̃k,vj jf2k,2vj sindk,v , (1)
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where v is the Fourier frequency and k is the wave vec-
tor of the y and z directions. The factor jx̃k,vj jf2k,2vj

represents the amplitude dependence of the flux. The last
equality defines the cross phase dk,v as the difference be-
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tween the phases of the scalar and the electrostatic poten-
tial fluctuation. The coherence, which generally appears
as an additional factor in the last expression, is assumed to
be unity. The equation for x̃k,v is
�2iv 1 ikyxy 0
0�x̃k,v 1

X
k0,v 0

c
B0

k0 3 x ? kfk0,v 0x̃k2k0,v2v 0 �
c
B0

ikyfk,v
dx0

dx
, (2)
where the mean flow has a linear variation with slope y
0
0

and x is defined as the distance from the rational surface of
the mode k. The frequency v is understood to include the
Doppler shift induced by the mean flow at the rational sur-
face. The Doppler shift enters the frequency in the other
equations which combine with the scalar equation to spec-
ify the eigenmode. When the summation of Eq. (1) is per-
formed, v becomes the mode frequency evaluated in the
frame of the flow at the rational surface. The linear advec-
tive response v 2 kyy

0
0x vanishes at a unique location for

each mode k, defining a set of Kelvin-neutral layers asso-
ciated with the scalar advection. The eigenmode problem
that determines v also specifies the electrostatic potential
fk,v. The eigenmode problem is mode specific; hence to
keep our treatment as general as possible we leave the form
of fk,v unspecified. As shown below, the eigenmode in-
tensity jfk,vj

2 enters with equal measure in both the flux
amplitude factor jx̃k,vj jfk,vj and the cross phase. When
we determine the relative sensitivity of each quantity to
flow shear by taking the ratio, the unspecified eigenmode
intensity (which can either increase or decrease in the pres-
ence of flow shear [1,14,15]) cancels out.

In the limit that the shearing rate kyy
0
0x becomes ar-

bitrarily large relative to dissipative processes (turbulent
or collisional), the scalar fluctuation is in phase with the
potential, and the flux is zero. This explains why strong
flow shear suppresses the cross phase. For a large but fi-
nite shearing rate (small but finite dissipation), the flux
is nonzero, and the degree of suppression depends on the
magnitude of the effective dissipation rate relative to the
shearing rate. If the system is turbulent, collisional dissipa-
tion is negligible in the energy-containing scales, and dis-
sipation is governed by the scattering of scalar fluctuations
by the turbulent flow. The scattering rate is quantified by
renormalizing Eq. (2). Using an eddy damped quasinormal
Markovian (EDQNM) closure [16,17], Eq. (2) becomes
∑

2iv 1 ikyxy0
0 2

≠

≠x
Dk,v

≠

≠x
2 k2

ydk,v

∏
x̃k,v �

c

B0
ikyfk,v

dx0

dx
, (3)
where the turbulent diffusivities Dk,v and dk,v are
given by

Dk,v �
X

k0,v 0

c2

B2
0

k0
y�k0

y 2 ky�fk0,v 0�x�

3 Rk2k0,v2v 0f2k0,2v 0�x� , (4)

dk,v �
X

k0,v 0

c2�k0
y 2 ky�≠fk0,v 0

B2
0 ky ≠x

Rk2k0,v2v 0

≠f2k0,2v 0

≠x
,

and Rk2k0 ,v2v 0 is the advective response at wave number
k 2 k0:

Rk2k0,v2v 0 �

∑
2i�v 2 v0� 1 i�ky 2 k0

y�xy0
0

2
≠

≠x
Dk2k0 ,v2v 0

≠

≠x

2 �ky 2 k0
y�2dk2k0,v2v 0

∏21

. (5)

Note that the two diffusivities D and d are effectively
the same up to a factor parametrizing the anisotropy of
turbulent eddies. The operator inversion required to solve
Eq. (3) allows the quantitative determination of the scalar
phase (and hence flux magnitude) set by the diffusivities.
However, the same operator inversion also governs the
diffusivities themselves. This is a crucial feature of cross-
phase suppression.

Equation (3) is inverted using a Green function, yield-
ing x̃k,v�x� �

R
dx0 Gk,v�x j x0�cB21

0 ikyfk,v�x0� dx0�dx0,
where Gk,v�x j x0� is the solution of R21
k,vGk,v�x j x0� �

d�x 2 x0�. The Green function is obtained from a WKB
expansion of the homogeneous problem in the asymptotic
limit of large shear. In this limit the operator of Eq. (5)
develops a singular layer because its highest derivative is
nominally of lower order. On the scale of the layer, the
diffusivities are smooth. As discussed in Ref. [16], they,
like x̃k,v�x�, have an integral over x0 from the inversion
of R, making their scale length of lower order than that of
the operator. The sum over wave number also smooths the
diffusivities, as illustrated in Fig. 3a of Ref. [17]. Treating
the diffusivities as uniform, and matching solutions satis-
fying G ! 0 at x ! 6` across the singularity, we obtain

Gk,v�x j x0� 	
2i3�2Dx
2Dk,v

´1�2A21�4�x,�A21�4�x.�

3 exp

Ω
2

2
3

i1�2 �A3�2�x.� 2 A3�2�x,��
´1�2

æ
,

�´ ! 0� , (6)

where A�x� � �x�Dx 2 �v 1 ik2
ydk,v��kyy

0
0Dx� is the

structure function of the neutral layer, ´ �
�Dk,v�kyy

0
0Dx3� is the flow shear parameter, Dx is the

fluctuation scale of the y
0
0 � 0 reference case, and x,

(x.) is the smaller (larger) of x and x0. The WKB solution
is uniformly valid provided �Redk,v�ReDk,v�k2

yDx2 .

exp�24�Re´�21�2�. This condition is always met for
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sufficiently strong shear; otherwise WKB breaks down in
a layer around the neutral surface defined by ReA�x� ,

Re´1�2 exp�24�Re´�21�2�. The amplitude suppression
theory is based on moments of the Green function in the
large shear limit [13]; hence Eq. (6) reflects the radial
scale reduction of BDT. Assuming the shearing rate
exceeds frequency and decorrelation rates, the width of
G, obtained by setting the argument of the exponent to
unity, is given by Dx´1�3. This is the reference mode
width Dx, reduced by precisely the BDT factor.

The integral in the Green function solution of x̃k,v�x�
can be evaluated asymptotically yielding an analytic
expression. Substituting into Eq. (1), the leading order
flux is

G � Re
X
k

ic2k2
yDx2jck�x�j2

B2
0 kyy

0
0Dx3

dx0

dx
1

A�x�
1 O�´2� . (7)

Here, the fluctuation spectrum has been represented as the
product of a spatial eigenfunction and a Lorentzian fre-
quency spectrum, jfk,v�x�j2 � jck�x�j2gk��v 2 vk�2 1

g
2
k �21, and the sum over v has been carried out in the con-

tinuous limit. Any v dependence in Eq. (7) is thus under-
stood to be evaluated at vk 1 igk, representing the peak
(nonlinear mode frequency) and linewidth of the frequency
spectrum at fixed k. In Eq. (7) the spatial structure of the
eigenmode and the neutral layer of scalar advection are
separated mathematically in the functions ck�x� and A�x�,
respectively. Previous calculations of eigenmode behav-
ior in flow shear indicate that the primary effect is a shift
of the eigenmode off the rational surface by an amount
proportional to y

0
0 [1,17]. Changes in the mode width are

weaker and are often ignored altogether. However, even
if the mode width is reduced to the BDT width (an upper
limit on the degree of reduction), it is far broader than the
width of the neutral layer. The latter goes as ´ to the first
power, while the BDT width goes like ´ to the 1�3 power.
Thus the neutral layer width is much narrower than any
other structure in the turbulence. This is significant. In the
neutral layer the effect of flow shear effectively vanishes,
and there is strong mixing of x across the neutral sheet.
Only outside the layer does the differential motion of the
shear flow impede transport by reducing the cross phase.
Hence, an observed reduction of flux is necessarily a mani-
festation of the extreme narrowness of the neutral layer in
the strong shear limit, allowing, for example, a probe that
samples a region of overlapping fluctuation structures to
weight preferentially the exteriors of neutral layers.

Outside the layer, the flux is

G � 2
X
k

c2

B2
0

pk2
yjck,v �x�j2

kyy
0
0Dx

dx0

dx

3

µ
k2

y Redk,v 1 gk

kyy
0
0Dx

∂ µ
x

Dx
2

vk

kyy
0
0Dx

∂22

, (8)

where k2
y Redk,v 1 gk ø kyy

0
0Dx, consistent with strong

shear. This result validates the fundamental assertion
of this Letter, that cross-phase suppression is stronger
than amplitude suppression. The cross-phase factor
185001-3
is sindk,v � ��k2
y Redk,v 1 gk��kyy

0
0Dx� �x�Dx 2 vk�

kyy
0
0Dx�21; the amplitude factor is everything else.

Assuming vk , kyy
0
0Dx, each factor has a scaling of

�kyy
0
0Dx�21; however, the cross-phase factor is pro-

portional to k2
y Redk,v 1 gk , which itself is strongly

suppressed due to dependence on the spectral energy and
additional powers of 1�y

0
0. To determine these powers

we note first that the spectral linewidth gk is induced
by nonlinearity in the steady state and assume that it
scales like k2

y Redk,v . The latter is defined by Eq. (4),
indicating that Red is governed by ReRk2k0,v2v 0 . This,
however, is the same shearing operator that governs G,
i.e., G � Re

P
c2k2

yB22
0 f2k,2vRk,vfk,vdx0�dx. Con-

sequently, Red has the reduction factors of G, both those
of amplitude and phase, making the cross-phase factor
of Eq. (8) much more sensitive to shear strength than
the amplitude factor. This result requires vk , kyy

0
0Dx;

otherwise all explicit y
0
0 dependence in Eq. (8) cancels

out for x , Dx. We conclude therefore that suppression
of flux beyond any reduction of the fluctuation energy
jck,v�x�j2 implies that the spectrum is dominated by
low frequency modes. (The fluctuation energy is usually
reduced in shear flow, but in some situations is observed
to increase [3,5,7] and in others is predicted to remain
unchanged or increase [1,14,15].)

It is possible to evaluate Redk,v , solving Eq. (4) with
the Green function used for Eq. (3). In terms of the Green
function, dk,v �

P
k 0 c2B22

0 �k0
y 2 ky�k21

y �dfk0,v 0�dx� 3R
dx0 Gk2k0,v2v 0�x j x0� �df2k0 ,2v 0�dx0�. Applying the

asymptotic procedures used to determine x, Redk,v is
given by

Redk,v �
X
k0

c2

B2
0

pjdck0�dxj2

kyy
0
0Dx

3

µ �ky 2 k0
y�2 Redk2k0,v2v 0 1 gk 2 gk 0

�ky 2 k0
y�y0

0Dx

∂

3

µ
x

Dx
2

vk 2 vk 0

�ky 2 k0
y�y0

0Dx

∂22

, (9)

where v and v 2 v0 are evaluated at vk 1 igk and
vk 2 vk 0 1 i�gk 2 gk 0�. The strong shear limit in
Eq. (9), �Dk2k0,v2v 0��ky 2 k0

y�y0
0Dx3� ø 0, excludes

ky 2 k0
y ! 0. Equation (9) is not a closed form for dk,v ,

but a recurrence relation that follows from the recursive
definitions of diffusivities intrinsic to large Reynolds
number closures such as the EDQNM. It expresses the
nature of spectral coupling, which links the diffusivity
at scale k to dissipation at scale k 2 k0. The recursive
nature of Eq. (9) makes it impractical for the evaluation
of dk,v except in certain limits. One of these limits is
relevant to experiment and represents an upper bound on
the flux. The limit applies to a restricted range of strongly
turbulent (nondissipated) scales coupled by a direct
cascade to dissipated scales at a somewhat higher wave
number. This is the type of situation suggested by mi-
croscale fluctuation bispectra in tokamaks, which indicate
185001-3
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the close proximity of driven and dissipated ranges [18].
In this circumstance the scale k 2 k0 is dominated by
dissipation and �ky 2 k0

y �2 Redk2k0,v2v 0 1 gk 2 gk 0

can be replaced by a collisional diffusion �k 2 k0�2m.
Substituting Eq. (9) into Eq. (8) yields

G 
 2
X
k,k0

c4

B4
0

p2k2
y jck,v�x�j2

kyy
0
0x

dx0

dx

3

µ
jdck0�dxj2k2

y�k 2 k0�2m

k2
y �ky 2 k0

y� �y0
0x�3

∂
. (10)

If the nondissipated turbulent scales are part of a wider
inertial range, the recursion of Eq. (9) cannot be bro-
ken. Equation (9) then suggests that the inverse scaling
of Red with y

0
0 is even stronger. Equation (10) is thus

an upper bound on the flux in a strong shearing regime.
The cross-phase contribution (in parentheses) has the fac-
tor �y0

0Dx�23; the amplitude contribution (everything else)
has the factor �y0

0Dx�21. Both are proportional to spec-
tral intensities jck,v�x�j2. The spectral intensity in the
cross-phase factor involves the radial derivative squared,
versus k2

y in the amplitude factor. Given the weak changes
in eigenmode width noted in other studies [1,10,17], this
difference is not likely to be significant. The intensity fac-
tors have important consequences. If the driving insta-
bility is completely stabilized by flow shear, the spectral
intensity factors will vanish, and with them the flux. More
importantly, Eqs. (8)–(10) describe experiments in which
the flux decreases despite fluctuation intensities that in-
crease with flow shear. Fluctuation intensities can respond
in this fashion for a variety of reasons [1,14,15], including
the increase in driving gradients caused by flux reductions
[see Eq. (2.21) of Ref. [1] ]. For example, taking x0 as
density, if the steepening of dx0�dx due to the particle
flux reduction is stronger than y

021
0 , the density fluctua-

tion ck,v�x� �kyy
0
0x�21dx0�dx will increase, as observed

in several experiments [5,7]. However, the additional three
factors of y

021
0 in the cross-phase contribution can easily

overcome this increase and yield a flux reduction sufficient
to make the steepening of dx0�dx stronger than y

0
0.

Equations (8) and (10) represent the flux of arbitrary ad-
vected scalars and are generic up to the eigenmode de-
tails that specify the forms and scalings of ck,v�x� and
the eigenfrequency. For low frequency collisionless fluc-
tuations in the strong flow shear regime, the fluxes of ad-
vected scalars like density and temperature are strongly
suppressed by flow shear, with cross-phase suppression
as the dominant effect and amplitude suppression as sec-
ondary. The result assumes that the flux is measured in
a region external to the narrow neutral layer. The result is
consistent with direct measurements in a variety of devices
[3–9]. It is also consistent with fluctuation measurements
that show residual fluctuations in transport barriers whose
diffusivity is so low that neoclassical estimates exceed the
measured value [2]. We emphasize that the present work
applies to advected scalars, and not to the advection of
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vector quantities, such as the flow itself, which governs
momentum transport. The latter is expected to behave
very differently. The modeling of turbulent momentum
transport in shear flows has a long history, dating back
to Prandtl’s mixing length hypothesis, and embodied in
the present-day k-´ closures [19]. In these models flow
shear leads to an anomalous momentum flux expressible
with a flux-gradient relationship. Indeed observed rota-
tion rates under momentum input are consistent with a mo-
mentum flux that exceeds the heat flux by an appreciable
amount [20].

The present work, while showing how the transport
cross phase behaves in strong flow shear, is obviously not
complete. The effect of the eigenmode, which in general
introduces a very difficult problem, needs to be assessed.
In certain experiments [4], it appears that the flow is lo-
calized to a layer so narrow that the flow profile, which is
not linear, plays a major role in the fluctuation structure.
These experiments also report that the sign of the flux can
actually reverse in the region of the shear flow, an effect
not predicted by the present theory [4,8]. Numerical simu-
lations of scalar advection in sheared flow will be carried
out for comparison with the present theory. These, and the
addition of details such as the eigenmode physics should
allow more quantitative comparison with experiment in the
future.
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